Outlier Resistant Estimation in Difference-Based Semiparametric Partially Linear Models
نویسندگان
چکیده
The difference based estimation in partially linear models is an approach designed to estimate parametric component by using the ordinary least squares estimator after removing the nonparametric component from the model by differencing. However, it is known that least squares estimates do not provide useful information for the majority of data when the error distribution is not normal, particularly when the errors are heavy-tailed and when outliers are present in the dataset. This paper aims to find an outlierresistant fit that represents the information in the majority of the data by robustly estimating the parametric and the nonparametric components. Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.
منابع مشابه
Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملEstimation in Partially Linear Single-Index Panel Data Models with Fixed Effects
In this paper, we consider semiparametric estimation in a partially linear single– index panel data model with fixed effects. Without taking the difference explicitly, we propose using a semiparametric minimum average variance estimation (SMAVE) based on a dummy–variable method to remove the fixed effects and obtain consistent estimators for both the parameters and the unknown link function. As...
متن کاملEmpirical likelihood for heteroscedastic partially linear models
AMS 2000 subject classifications: 62F35 62G20 Keywords: Double robustness Empirical likelihood Heteroscedasticity Kernel estimation Partially linear model Semiparametric efficiency a b s t r a c t We make empirical-likelihood-based inference for the parameters in heteroscedastic partially linear models. Unlike the existing empirical likelihood procedures for heteroscedastic partially linear mod...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملStatistical Inference for Semiparametric Varying-coefficient Partially Linear Models with Error-prone Linear Covariates
We study semiparametric varying-coefficient partially linear models when some linear covariates are not observed, but ancillary variables are available. Semiparametric profile least-square based estimation procedures are developed for parametric and nonparametric components after we calibrate the error-prone covariates. Asymptotic properties of the proposed estimators are established. We also p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 44 شماره
صفحات -
تاریخ انتشار 2015